
Recursive 
Structures
in Python



• An attribute can refer to another 
object of the same type

• Notice the class Node. The attribute 
named next is... another Node!

• This is a recursive data type!

• We'll discuss how to initialize a 
recursive property to avoid infinite 
recursion shortly...

class Node:
data: int
next: Node

Node

data 110

next

Node

data 210

next



• You can use this ability to form data structures with different properties and uses.
• In COMP110, you'll explore the Singly-linked List (left)
• In COMP210, you'll explore other data structures like Trees (right) and Graphs

class Node:
data: int
next: Node

Node

data 1

next

Node

data 2

next

class Element:
data: int
left: Element
right: Element

Element

data 2

left

right

Element

data 1

left

right

Element

data 3

left

right



• A classic, simple data structure in Computer Science

• Formed by chaining together a sequence of objects
• The first node is conventionally called the head
• Our focus is on singly-linked lists, meaning a Node only references the Node after it

• Linked Lists are more cumbersome to work with than Python's List
• However, they're amazing for understanding and exploring fundamentals including:
• None / "null" values
• References
• Recursive algorithms

Node

data "Hello"

next

Node

data "World"

next None

head



• If a Node refers to a next Node, and the next 
Node refers to another next Node, then when 
does it end?

• Recursive attributes are terminated with a 
None value.
• In many other languages this is called Null.
• It is a "reference to nowhere" that you can read as 

"this attribute refers to nothing."
• For static typing purposes, we declare 
Optional[RecursiveType]

• Our linked lists is "None terminated" or, 
commonly, "Null terminated"

class Node:
data: int
next: Optional[Node]

Node

data ""

next

None



1. You can construct a new Node at the front of another linked list
• via the Node constructor

2. You can access a linked list's first value
• via the data attribute

3. You can access the rest of the list, excluding the first Node
• via the next attribute

• That's it! These are the fundamental capabilities we need.
• Using these simple operations, you will write more advanced functions, or abstractions, to 

perform more sophisticated tasks with linked lists.
• Notice we are intentionally deciding to treat a constructed Node as immutable, we are not 

going to modify its data or next attributes after construction.



• How can we write a function that, given a List of any length, we 
can count the number of elements in it?

• Let's try it with pseudo-code first!

• Count Algorithm, Given any List
1. If the List is empty, then the count is 0
2. Else, count is 1 + the count algorithm applied to the rest of the List



When processing a recursive data structure recursively:

1. Always test to see if the structure is empty (equal to None)
• This is a base case!

2. Make the recursive call on a subpart of the structure
• With a singly linked list, this is always going to be the next Node.



13

def count(head: Optional[Node]) -> int:
if head is None:

return 0
else:

after_me = count(head.next)
return after_me + 1

1. Always 
check if list is 
empty! This is 
the base case.

2. Make the recursive call 
with the rest of the list.



14


