Practice with basic
Classes and Objects /
In Python >

Follow-along #0: Construct a Pizza Object

* Create a file named
s34 _object_practice.py

e Establish a Pizza class and main function
boilerplate as shown left.

* In the main function:

1. Declare avariable and assign it a Pizza
object. Print this object's size.

2. Assign different values to each of its three
attributes (extra_cheese, toppings). After
doing so, print the object's # of toppings
again.

""'A demonstration of classes/objects."""

class Pizza:
""YA simple model of a Pizza."""
size: str = "medium"
extra_cheese: bool = False
toppings: int = 0

def main() —> None:
"""Entrypoint of program."""

if __name__ == "__main__":
main()

1. Initialize a variable that holds a Pizza object and print it
a_pizza: Pizza = Pizza()
print(a_pizza.size)

// 2. Assign different values to each of its properties

a_pizza.size = "small";

a_pizza.extraCheese = true;

a_pizza.toppings = 2;

print(str(a_pizza.size) + " with " + str(a_pizza.toppings) + " toppings")

Object Values Live on the Heap

Like Lists, objects are reference types and typically mutable. Their variable
names on the call stack hold references to their actual valuesin the heap.

The Stack The Heap
Globals
11 def main() -> None: ...elided...
"""Entrypoint of program."""
a_pizza: Pizza = Pizza() .
a_pizza.size = "small" mMain m
a_pizza.extra_cheese = True) . B
a_pj_zza.tgppings = = RA

print("Size: " + str(a_pizza.size)) 3 pizza
print("EC: " + str(a_pizza.extra_cheese)) _P toppings
print("Toppings: " + str(a_pizza.toppings))

Hands-on: Calculate the Price of a Pizza

3. Declare a price function that takes a Pizza as a Parameter
and returns a float.

4. Correctly implement the price function:
» Size sets a base price of $7 small, $9 medium, $11 large
 Extra cheese adds $1
 Each topping costs $0.75

5. Call your price function from main and print its result.
|s it working?

ALWAYS Initialize your Variables

Especially important with variables holding references to objects
 Example:

pizzal: Pizza

pizzal.size = "large"

> NameError: name 'a pizza' is not defined

* Thefix:pizzal: Pizza = Pizza() # Always initialize!

The "Bundling" of Related Values is an
Important Benefit of Objects

» Consider the following two function signatures...

def price(size: str, extra_cheese: bool, toppings: int) -> float:

def price(pizza: Pizza) -> float:

* Notice with a Pizza data type the function's semantics are improved
* |s the first function calculating the price of a cheeseburger?

* The second function's signature reads more meaningfully...
"priceis afunctionthatis givenaPizza object and returns a number"

» Consider an object with far more properties...
* Pizza: Base sauce, gluten free crust, thin vs. deep dish, ...
* Objects give us a convenient means for tightly packaging related variables together

