
Practice with basic
Classes and Objects
in Python

Follow-along #0: Construct a Pizza Object

• Create a file named
ls34_object_practice.py

• Establish a Pizza class and main function
boilerplate as shown left.

• In the main function:

1. Declare a variable and assign it a Pizza
object. Print this object's size.

2. Assign different values to each of its three
attributes (extra_cheese, toppings). After
doing so, print the object's # of toppings
again.

"""A demonstration of classes/objects."""

class Pizza:
"""A simple model of a Pizza."""
size: str = "medium"
extra_cheese: bool = False
toppings: int = 0

def main() -> None:
"""Entrypoint of program."""
...

if __name__ == "__main__":
main()

1. Initialize a variable that holds a Pizza object and print it
a_pizza: Pizza = Pizza()
print(a_pizza.size)

// 2. Assign different values to each of its properties
a_pizza.size = "small";
a_pizza.extraCheese = true;
a_pizza.toppings = 2;
print(str(a_pizza.size) + " with " + str(a_pizza.toppings) + " toppings")

Object Values Live on the Heap

Globals

The Stack The Heap

main

RA 23

a_pizza

Pizza

size "small"

extra_cheese True

toppings 3

Like Lists, objects are reference types and typically mutable. Their variable
names on the call stack hold references to their actual values in the heap.

...elided...

Hands-on: Calculate the Price of a Pizza

3. Declare a price function that takes a Pizza as a Parameter
and returns a float.

4. Correctly implement the price function:

• Size sets a base price of $7 small, $9 medium, $11 large

• Extra cheese adds $1

• Each topping costs $0.75

5. Call your price function from main and print its result.
Is it working?

ALWAYS Initialize your Variables

Especially important with variables holding references to objects

• Example:

pizza1: Pizza

pizza1.size = "large"

> NameError: name 'a_pizza' is not defined

• The fix: pizza1: Pizza = Pizza() # Always initialize!

The "Bundling" of Related Values is an
Important Benefit of Objects

• Consider the following two function signatures...

• Notice with a Pizza data type the function's semantics are improved
• Is the first function calculating the price of a cheeseburger?
• The second function's signature reads more meaningfully...

"price is a function that is given a Pizza object and returns a number"

• Consider an object with far more properties...
• Pizza: Base sauce, gluten free crust, thin vs. deep dish, ...
• Objects give us a convenient means for tightly packaging related variables together

def price(size: str, extra_cheese: bool, toppings: int) -> float:

def price(pizza: Pizza) -> float:

