
Classes and Objects
Conceptual Introduction

You can define your own data types!

• A data type communicates a value's attributes and capabilities
• e.g.: If you have a value of type int, you know you can do arithmetic with it

• So far, you've primarily used built-in data types (exception: custom Tuples)

• You will often need to model more complex concepts
• Some real-world examples: Twitter Profiles, Pizza Order, Data Records

• A class is how you define a custom, composite data type.
• Its attributes are a grouping of variables.

• A value whose data type is a composite is an object.
• Anything bound to an object (variables, items in a list, and so on) holds a reference to

the object.

• Classes aren't actually visual templates.

• They're definitions of what a specific composite data type is.

• However, this is a useful analogy:

Twitter Profile Template : @KrisJordan's Profile :: Class : Object

What is this? A "Class"!

"Objects"!

What are these?

(They're all Twitter profiles.)

How would you model a TwitterProfile in code?

class TwitterProfile:
name: str
handle: str
bio: str
show_vine: bool
is_private: bool
followers: int
following: int

• The exact syntax will be covered in the next video.

• The big idea is you can "bundle" many related variables into
a single data type.

• These variables are attributes of the TwitterProfile class.

ClassObject's
Each

attributes are established by its

Each object's attributes are like a
bundle of variables. Notice each object
has its own values for each attribute.

Classes vs Dictionaries

• Attributes must be valid identifiers

• Attributes are individually typed

• All objects of a class have the same
attributes* defined

• Useful when: attributes of model
have different types and are known
ahead of time

• Keys are any immutable type
• e.g. str, float, int, Tuple of immutables

• str keys are not limited to identifier rules: can have
spaces, special characters, and so on

• All values associated with keys are
of a single type*

• No guarantee any two Dictionaries
have the same keys

• Useful when: keys ("attributes") of
model are unknown ahead of time
and of the same type

* When writing well formed, type annotated Python programs.

