
Testing with

pytest



Big Idea: You can write a function to test the 
correctness of another function!

• This is generally called unit testing in industry
• Helps you confirm correctness during development

• Helps you avoid accidentally breaking things that were previously working

• The strategy:
1. Implement the "skeleton" of the function you are working on

• Name, parameters, return type, and some dummy (wrong/naive!) return value

2. Think of examples use cases of the function and what you expect it to return in each case

3. Write a test function that makes the call(s) and compares expected return value with actual

4. Once you have a failing test case running, go correctly implement the function's body

5. Repeat steps #3 and #4 until your function meets specifications

• This gives you a framework for knowing your code is behaving as you expect



Example: Writing and Testing a total Function (1/2)

Let's write a function to add up all elements of a float list!

Step 0) Implement the function skeleton:
def total(xs: List[float]) -> float:

return -1.0 # return a dummy value (wrong but correct type)

Step 1) Think of some example uses...

total([1, 2, 3]) should return 6.0

total([110]) should return 110.0

total([]) should return 0.0



Setting up a pytest Test Module

• To test the definitions of a module, first create a sibling module with the 
same name, but ending in _test
• Example name of definitions module: lessons.ls24_module
• Example name of tests module: lessons.ls24_module_test
• This convention is common to pytest

• Then, In the test module, import the definitions you'd like to test

• Next, add tests which are procedures whose names begin with test_
• Example test name: test_total_empty

• To run the test(s), two options:
1. In a new terminal: python -m pytest [package_folder/python_module_test.py]
2. Use the Python Extension in VSCode's Tests Pane 4



Follow-Along: Testing total

• Let's implement a function to sum the elements of an array

• Function Skeleton:

• What are our test cases?



Test-driven Function Writing

• Before you implement a function, focus on concrete examples of 
how the function should behave as if it were already implemented.

• Key questions to ask:

1. What are some usual arguments?
• These are called use cases.

2. What are some valid but unusual arguments?
• These are your edge cases.

3. Given those arguments, 
what is your expected return value for each set of inputs?



Test-Driven Programming: Case Study join

• Suppose you want to write a function named join

• Its purpose is to make a string out of an int list xs's values where each 
element is separated by some delimiter.

Example: joining xs with values [1, 2, 3] and delimiter "-" returns "1-2-3"

• Its signature is this: def join(xs: List[int], delimiter: str) -> str

1. What are some usual input parameters?
• These are called use cases.

2. What are some valid but unusual input parameters?
• These are your edge cases.

3. Given those input parameters, 
what is your expected return value for each set of inputs?



Testing Use/Edge Cases Programmatically

• After you have some use and edge cases, implement the skeleton of the 
function that is syntactically valid but intentionally incomplete
• Typically this means define the function and do nothing inside of the body except 

return a valid literal value. For example:

• Then, turn your use and edge cases into programmatic tests.



Testing is no substitute for critical thinking…

• Passing your own tests doesn't ensure your function is correct!
• Your tests must cover a useful range of cases

• Rules of Thumb: 
• Test 2+ use cases and 1+ edge cases.

• When a function has if-else statements, try to write a test that reaches 
each branch.


