
for...in Loops

Iteration: Looping Toward a Goal
• Iteration is the superpower of many algorithmic problems:

• Given a sequence you want to process, you work through them item-by-item

• Common pattern when iterating on a Sequence:

seq: range = range(1, 100, 2)
i: int = 0
while i < len(seq):

item: int = seq[i]
process item
i += 1

2

for...in - Iterate through a collection of items.

seq: range = range(1, 100, 2)
i: int = 0
while i < len(seq):

item: int = seq[i]
process item
i += 1

3

seq: range = range(1, 100, 2)
for item in odds:

process item

• The left pattern is so common when iterating through each item in a sequence, the
for...in statement is a simpler abstraction for doing same.

• The for..in statement is often broadly called a "for each" construct and has variations
in most languages.

• This pattern works generally on any kind of sequence.
• Also works for other iterable collection types we'll explore in the days ahead

for...in - Semantics

4

for [identifier] in [sequence]:
In the repeat block:
identifier is now a variable
assigned to the next item
in the iteration.

• identifier is a variable name you choose for each item in repeat block

• The assignment of each item and progression through each item in the
sequence is handled for you as part of the construct.

• The loop completes after the repeat block evaluates for the last item.

• This works for algorithms where you want to process every item.
• This gives you less control than with a while loop.
• Many algorithms involve more clever use of indexing.

