
Sequences

What is a Sequence?
• An Abstract Data Type that is an ordered, 0-indexed set of values.

• There are many specific types of sequences with their own properties.
Common, built-in sequence types in Python include:

1. str - a sequence of character data

2. Tuple - a fixed-size sequence of values of any types

3. List - a dynamically-sized sequence of values of a specific type

4. range - a sequence of integers at intervals between a start and end

2

Tuples

4

Tuple Types
1. Import the type definition for List from the standard typing library

from typing import Tuple

2. Tuples types are made of a specific, fixed-length sequence of any mixed type(s) by:

Tuple[type0, type1, ..., typeN]

3. Typically you will want to alias your Tuple types to give them a more meaningful name

Examples:

Point2D = Tuple[float, float]

Color = Tuple[int, int, int]

4. You construct a Tuple with a Tuple literal. Tuple variables of the above types could be initialized as follows:

origin: Point2D = (0.0, 0.0)
gray: Color = (128, 128, 128)

Lists

Lists are a sequence of values of the same type...
...and can change at runtime!

a: List[int] int int int int int int int int

index: 0 1 2 3 4 5 6 7

1. Each item in a List* is called an item or an element

2. An element is a single value addressed by its index ("Room #")

3. All elements in a List are of the same type**
• An array of ints, floats, strings, bools, and so on.

* Other languages may use the term array instead of list and may have subtly different characteristics.
** Technically, in Python, you can create lists where elements are of many different types. While this flexibility sounds nice, the
unpredictability of it is difficult to reason about in practice and is a common source of accidental errors. It is generally advised for lists
to work with a single type of data.

Elements are addressed by the array
variable's name and index

a:List[int]

Index 0 1 2 3 4 5 6 7

1. Notation: array_name[index], i.e. a[1]

2. Indexing starts at [0] (not [1])
• First index always 0
• Last index always length of array – 1

• This is a convention shared by most programming languages

Declaring and Initializing Lists

1. Import the type definition for List from the standard typing library*

from typing import List

2. You can declare a List of any type by

<identifier>: List[type]; – list of <type>

ages: List[int] – list of int values

words: List[str] – list of str values

3. You construct an empty list in two ways:
1. Use the List constructor with no argument: list()
2. Use List literal with no elements: []

4. These two initialization tasks are often done at the same time:

words: List[str] = []

List Literals

• Initializing a List with a sequence of elements is frequently useful

• Using List Literal syntax, you can do this directly:
ages: List[int] = [18, 21, 20, 18, 19, 19]
words: List[str] = ["the", "quick", "brown", "fox", "jumped"]

• The List Literal syntax is a sequence of expressions, separated by commas,
whose types match the List's type.

• There are other ways to initialize non-empty Lists you'll soon learn!
1. Iterator-based initialization
2. List comprehensions

9

Appending Elements to a List

• Lists are a mutable data structure that can grow (or shrink) in length!
• Unlike Tuples and Strings!

• The append method adds an element to the end of a List
• The element to add is the method's only parameter

• The method returns None, because it mutates the List

• Examples:
ages.append(22)
words.append("over")

10

Removing Elements from a List

• The pop method removes an element at a given index from a List
• The index to remove is the method's only parameter

• The method returns the value previously stored at that index

• If no index is provided, the pop method defaults to the last index

• If the popped index is in the middle of the list, the indices of all following elements move back by one to avoid a
"gap" in the middle of a list.

• Example:
ages: List[int] = [18, 19, 20, 21]

print(ages.pop(1)) # 19
print(ages) # [18, 20, 21]
print(ages.pop()) # 21
print(ages) # [18, 20]

11

Fundamental List Operations

Operation Form Example

Declaration name: List[type] scores: List[int]

Construction
(Empty)

name = [] scores = []

Construction
(Non-empty)

name = [<comma separated values>] scores = [12, 0, 9]

of Elements len(name) len(scores)

Access Element name[index] scores[0]

Assign Element name[index] = expression scores[1] = 12

Append Element
Returns None.

name.append(expression) scores.append(13)

Remove Element
Returns removed element.

name.pop(index_expression) scores.pop(1)

Ranges

Ranges of Integers

• What are the attributes of the range above?

• A start point that is inclusive

• A stop point that is exclusive

• A step that moves up by one

The range type models the idea of a Range

• range is a built-in sequence type in Python
• Just like str, Tuple, and List
• A range value is immutable, like str and Tuple
• Documentation: https://docs.python.org/3/library/stdtypes.html#ranges

• The range constructor returns a range object

range(start: int, stop: int[, step: int = 1]) -> range

• start is inclusive.

• stop is exclusive

• step defaults to 1 and is optional, as denoted by the brackets

15

https://docs.python.org/3/library/stdtypes.html#ranges

A range object has attributes
• Attributes are named values bundled in an object

• Attributes represent the state of an object
• Named like variables, unlike indexed items of a tuple or list. Attribute names are identifiers.
• Hold Values, also like variables, unlike methods which are special functions

• Attributes are accessed using the dot operator following the object:
[object].[attribute_name]

• Example:
>>> a_range = range(0, 10, 2)
>>> a_range.start
0
>>> a_range.stop
10
>>> a_range.step
2

• The range object's attributes are read-only, making a range an immutable object

16

range

start 0

stop 10

step 2

a_range

stack frame

A range object is a sequence type
• You can access items in a range's sequence by its index using subscription:

• range[0], range[1], ..., range[N]

• Example:
>>> a_range = range(0, 100, 10)
>>> a_range[0]
0
>>> a_range[1]
10
>>> a_range[9]
90
>>> a_range[10]
IndexError: range object index out of range

• Notice the range object's state is only its three attributes
• But as a sequence type, with subscription, it also behaves as if it is made of many more items.

• How? Abstraction! In this case the abstraction of a range is fully represented by just three attributes.

• This abstraction is possible through arithmetic
range[index] evaluates to range.start + (range.step * index)

17

range

start 0

stop 100

step 10

a_range

stack frame

18

