
return
vs print



max
int

int

int

Return vs. "Side-effects"
• A function definition has a list of parameter 

"inputs" and a single returned "result".

• What happens if you call print from within a 
function definition?

• Consider the modified max function.

• This breaks our model!

• Our Fundamental Pattern also has an Environment
• An algorithm may have "side-effects" on its "environment"

• The terminal your program is running in is part of 
its environment

• When you call the built-in print function, it has a 
"side-effect" that produces output in the terminal

def max(a: int, b: int) -> int:
"""Return the largest of two numbers."""
print(str(a) + ", " + str(b))
if a > b:

return a
else:

return b

Terminal

Environment

print



The return Statement vs. Printing

• The return statement is for the computer to use as the evaluated result of 
the originating function call expression
• A bookmark is dropped when you call a function. 

When that function's body reaches a return statement, the returned value is 
"substituted" for the function call expression and the program continues.

• Printing is for getting information out of the program. 
• Typically, it is for humans to see.
• To present data to the user of a program you must output it in some way.

• With a function that returns a value and has no other side-effects, you can 
print the value it returns by:

1. Printing the function call expression directly, such as print(a_func()), or 
2. By storing its return value in a variable and later printing the variable.



Procedures are functions that return nothing...
• ...their whole purpose is to produce a side-effect on the 

environment.

• The purpose of procedures is to produce side-effects such as 
printing output.
• The print function is a procedure!

• Use a return type of None to declare a procedure.

5

def print_repeatedly(line: str, repeats: int) -> None:
"""Print a line a specific number of repetitions."""
i: int = 0
while i < repeats:

print(line)
i = i + 1

print_repeatedly("hello", 5)
print_repeatedly("world", 5)


