
return
Statements



The return Statement

• General form: 

return <expression>

• Every function definition with a return type other than None must have 
at least one return statement

• The return expression's 
data type must match 
the return type of its 
function

def max2(x: int, y: int) -> int:
if x > y:

return x
else:

return y



The Statement

• IMPORTANT: When control reaches any return statement in the function 
definition, then the function call is complete. 

• The computer evaluates the expression and sends the Return Value
immediately back to the Return Address.

• Control jumps back to the Return Address and no additional statements 
in the function will evaluate in this call.

• This is ALWAYS, ALWAYS, ALWAYS true!



Return Semantics: Consider the following function

• Consider an 
alternate 
implementation of 
the max function

• Is it still correct?
What happens when 
y is greater than x?

• Notice there is no 
else branch.

def max2(x: int, y: int) -> int:
if x > y:

return x

return y



Returning from a function

def max2(x: int, y: int) -> int:
if x > y:

return x

return y

L1. result: int = max2(10, 5);

1

2
3

4

1. The max function is called with arguments:

10, 5

2. The processor jumps to max function.
• if x > y evaluates to True, enters then block

3. return Statement encountered. Expression a 
evaluates to 10. The function call is complete! 

4. Control sends Return Value (9) back to Return 
Address (L1).

5. max(10, 5) evaluates to 10 and is assigned to 
result.

L1

max2

RA

Stack Memory:
10x

5y

10RV



Every function call returns only once

• A function definition may have many return statements, however, for 
any given call only one return statement will evaluate

• A function may contain a return statement inside of a loop, however, as 
soon as control encounters it, it will stop and return immediately

• Generally: as soon as the computer reaches any return statement within 
a function, that function call completes


