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The return Statement

• General form: 

return <expression>

• Every function definition with a return type other than None must have 
at least one return statement

• The return expression's 
data type must match 
the return type of its 
function

def max2(x: int, y: int) -> int:
if x > y:

return x
else:

return y



The Statement

• IMPORTANT: When control reaches any return statement in the function 
definition, then the function call is complete. 

• The computer evaluates the expression and sends the Return Value
immediately back to the Return Address.

• Control jumps back to the Return Address and no additional statements 
in the function will evaluate in this call.

• This is ALWAYS, ALWAYS, ALWAYS true!



Return Semantics: Consider the following function

• Consider an 
alternate 
implementation of 
the max function

• Is it still correct?
What happens when 
y is greater than x?

• Notice there is no 
else branch.

def max2(x: int, y: int) -> int:
if x > y:

return x

return y



Returning from a function

def max2(x: int, y: int) -> int:
if x > y:

return x

return y

L1. result: int = max2(10, 5);
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1. The max function is called with arguments:

10, 5

2. The processor jumps to max function.
• if x > y evaluates to True, enters then block

3. return Statement encountered. Expression a 
evaluates to 10. The function call is complete! 

4. Control sends Return Value (9) back to Return 
Address (L1).

5. max(10, 5) evaluates to 10 and is assigned to 
result.
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Every function call returns only once

• A function definition may have many return statements, however, for 
any given call only one return statement will evaluate

• A function may contain a return statement inside of a loop, however, as 
soon as control encounters it, it will stop and return immediately

• Generally: as soon as the computer reaches any return statement within 
a function, that function call completes


