
Parameter
Passing

Introducing Parameters

• Parameters allow functions to
require additional pieces of
information in order to be called

• Parameters are specified within
the parenthesis of function
definition

• Parameters look a lot like variable
declarations... because they are!

• Parameters are local variables to
the function. Their names are
scoped inside of the function
body's block.

Function Definition
def max2(x: int, y: int) -> int:

if x > y:
return x

else:
return y

Example

Function Definition
def <name>([parameters]) -> <return_type>:

[statement0]
...
[statementN]

General Form

What effect does declaring parameters have?

• When a function declares parameters, it is declaring:
"you must give me these extra pieces of information in order to call me"

• The function definition on the left says:
"in order to call max2, you must give me two number values"

• In the usage to the right, when we call max, we must give it two int values.

OK Function Call Usage

max2(3, 4)def max2(x: int, y: int) -> int:
if x > y:

return x
else:

return y

Function Definition

Incorrect Function Call Usage

max2(3, 4, 50)

Incorrect Function Call Usage

max2(3)

Arguments vs Parameters

• Arguments are the values we
assign to parameters

• The type of the arguments must
match the types of the
parameters

• We couldn't call max with str
values: max2("oh","no")

max2(3, 4)

These are arguments.

def max2(x: int, y: int) -> int:
if x > y:

return x
else:

return y

These are parameters.

def max2(x: int, y: int) -> int:
if x > y:

return x
else:

return y

Function Calls: Step-by-Step (1 / 3)

For each function call…

1. Is name defined and bound to a
function?

• NameError if not!

2. Does it have the correct # of
arguments for function's parameters?

• TypeError if not!

3. Its argument expressions are evaluated.

• In this example, 8 and 9 are fully
evaluated literals.

4. In memory, a frame is established on
the call stack and a Return Address
(RA) Line Number is recorded as a
"bookmark" of where we'll come back
to with a result.

L1. max2(8, 9)

Notice the argument matches the
parameters in type (number) and

count (2)!

L1

max2

RA

Stack Memory:

Function Calls: Parameter Passing (2 / 3)

Argument values are assigned to
parameters:

1. This happens invisibly when the
code is running. You will never see
the lines to the right.

2. However, each time a call happens,
the processor assigns each argument
value to its parameter.

3. This is called "parameter passing"
because we are copying arguments
from one point in code into another
function's frame in memory.

L1

max2

RA

Stack Memory:
8x

9y

def max2(x: int, y: int) -> int:
x = 8
y = 9
if x > y:

return x
else:

return y

L1. max2(8, 9)

Function Calls: Jumping into Function Body (3 / 3)

3. Finally, the processor
then jumps into the
function and
continues onto the
first line of the
function body block

L1

max2

RA

Stack Memory:
8x

9y

def max2(x: int, y: int) -> int:
x = 8
y = 9
if x > y:

return x
else:

return y

L1. max2(8, 9)

Function Calls: Returning (3 / 3)

The return statement is discussed
in full in another lesson, but for
completeness, when a return
statement is reached its
expression is evaluated and added
as the RV of the frame.

This value 9 is what the function
call expression max2(8, 9) would
evaluate to. Control would resume
at the Return Address at L1.

L1

max2

RA

Stack Memory:
8x

9y

def max2(x: int, y: int) -> int:
x = 8
y = 9
if x > y:

return x
else:

return y

9RV

L1. max2(8, 9)

