
Function
Definitions and Calls

in Python



Function Definition Overview
• A function definition is a subprogram

• It has a name

• Parameters are placeholders for inputs

• The function body is the algorithm, or 
sequence of steps, the function will follow 
when it is used

• A function may return a resulting value
• The function declares the type of return value

* Defining a function is like writing down a recipe. The 
definition has no immediate result. It is not until you call a 
function or follow a recipe that its steps are carried out.

Function Definition



Visualizing: The Function Definition
• Imagine a function that takes in a float value and returns its square.

• Disclaimer: Yes, this is a very silly function with the power operator ** built-in! It's chosen to highlight the shape 
and mechanisms of a function definition and call.

• We can visualize it like the block below:
• One parameter, of type float

• The function body is the named box, its algorithm is opaque "abstracted away"

• The return type is an int

• So, how can we use of this building block in our program?

3



Function Call Expression Overview

1. A function call is an expression that 
will carry out a function's definition 
and evaluate to its returned value.

2. Arguments are the actual input 
values assigned to the definition's 
parameters.

3. A bookmark is left at the function call 
expression. Control jumps into the 
function definition.

4. When control reaches the function's 
return statement, the returned 
result is substituted for the function 
call and control jumps back.

Function Call 
Expression Function Definition

Evaluates to 
Returned Value



Visualizing: A Function Call Expression

• Imagine the function call expression on the right-hand side of this variable initialization statement.

• We know the expression must evaluate to a single value.

1. A function call expression needs to be evaluated

2. The call's argument 4 is used as definition's input parameters

3. The square "algorithm" results
in the value 16 returning

4. The function call expression
evaluates to 16

Function Call Expression

Evaluates to:

16

Function Definition

4 16



Function Definition Syntax
def [name]([parameter0], ..., [parameterN]) -> [return_type]:

[function body statement0]

...

[function body statementS-1]

return [expression of type return_type]

• Like variables, functions are given a name.
• Function names are governed by the same identifier rules as variables.

• Parameters are special variable declarations. 
• Each parameter declared has the following syntax 
• Parameters are placeholders for the inputs a function needs.

• Return type specifies the data type the function will return.

• Statements in the body block run only when a function is called.
• Statements in the same block must be consistently indented one tab
• Functions must have at least one return statement which return an expression of type return_type



Function Definition Example

def square(x: float) -> float:
"""Raise a number to the power of 2."""
squared_value: float = x ** 2
return squared_value

Name Return Type

The square function can be given a float 
value and returns the square of its parameter.

Return 
Statement

Body

Parameter

Doc String



Function Call Syntax

[name]([argument0], ..., [argumentN])

1. When a function call is encountered the processor drops a bookmark.

2. A function call's data type is its function definition's return type
For example: four_squared: float = square(4.0)

Since the square function's return type is float, a function call to square is a float 
expression. 

3. When control reaches a function call, it follows rules to jump into to the 
function call with input arguments and returns with the return value.
• We'll continue exploring these rules in depth in upcoming lessons.

square(4.0)

Example:



What purpose do functions serve?

• Functions are a fundamental unit of process abstraction
• Learning to tie your shoe was process abstraction

• As a child, you struggled to learn the right series of steps
• Nowadays you can just "tie your shoe" without worrying about each step

• Defining a function is process abstraction
• Defining functions takes thoughtful effort to get the right series of steps
• Once correct, you can reuse your function by "calling" it, without worrying about its steps

• Functions help you break down and logically organize your programs

• Functions make it easy to reuse computations or sequences of steps
• Functions help you avoid repetitive, redundant code



Functions with Multiple Parameters

• Let's declare the function with multiple 
parameters shown right!
• Define it after square
• Notice the parameters are separated by a comma

• To call your function:

1. Save your file

2. Begin a new REPL

3. Import it (as shown right)

4. Call it!

• Notice: To call a function with multiple 
parameters requires multiple arguments!
• Ordering and types matter!

10

def power(x: float, exp: int) -> float:
"""Returns x raised to the exp."""
raised_value: float = x ** exp
return raised_value

>>> from lessons.ls08_functions import power
>>> power(4.0, 2)
16.0
>>> x: float = power(3.0, 4)
>>> x
81.0
>>> power(3.0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: power() missing 1 required 
positional argument: 'exp'
>>> quit()



Up Next House Challenge & Async

• We will transition to a small challenge and then you should go 
complete LS09: Named Constants at your own pace. Hand-in
questions before midnight tonight.

• Challenge: How could you change this line of code to make use of a 
function call expression to your power function, rather than x ** 2?

11

def square(x: float) -> float:
"""Raise a number to the power of 2."""
squared_value: float = x ** 2
return squared_value


